For some power supply applications it is desirable to change the output voltage over a wide range. There are a number of ways to control the output voltage of power supplies that are designed to provide wide adjustment ranges. Remotely adjustable output voltages can be implemented by using one of the following methods.
Variable Voltage Control
In this case an external variable control voltage (e.g., 1-6V) is connected to the designated input of the power supply, sometimes called the PV input. As the input control voltage is varied it will cause the output voltage to change in a fairly linear fashion over a wide range (e.g., 20% to 120% of the nominal output voltage). For some applications this is a low cost method of providing a programmable power supply. Below are diagrams showing an example of this type of remote voltage adjustment for Lambda’s HWS/PV and SWS-L series of power supplies.
Variable Resistive Control
Some power supplies can be remotely adjusted via a variable resistive control (external potentiometer). This method has the advantage that an external voltage is not required since an internal Ref. voltage is provided by the supply. As the resistance changes, it will cause the output voltage to change in a non-linear fashion over a wide range (e.g., 20% to 120% of the nominal output voltage) as shown in the diagrams below (Lambda’s HWS/PV series). For some applications this is a low cost method of providing a programmable power supply.
Serial Digital Control
Programmable Power Supplies can be remotely controlled via a serial digital port such as RS232 or RS485. Both the output voltage and current can be controlled from zero to the maximum output ratings. In addition, alarm signals from the supplies can be sent back to the remote computer or controller via the same digital link. Programmable Power Supplies are more expensive than wide adjustable supplies mentioned above, but they have a large array of local and remote control features that are not found elsewhere. Lambda’s ZUP series is a good example of a feature-rich Programmable Power Supply.
Subscribe to:
Post Comments (Atom)
Popular Posts
-
There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant cu...
-
There are two frequently used terms for types of DC-DC converters; non-isolated and isolated. This “isolation” refers to the existence of a...
-
Switchmode power supplies without Power Factor Correction (PFC) tend to draw the AC input current in short bursts or spikes relative to the ...
-
A power converter’s efficiency (AC-DC or DC-DC) is determined by comparing its input power to its output power. More precisely, the efficien...
-
Many rack-mounted power systems are specified as being 1U, 2U, 3U, etc. What does this mean? For electronic equipment racks (e.g., 19 or 23 ...
-
One question I am frequently asked is: “The customer is looking for a Class two power supply; what can you offer him?” My response is alwa...
-
Conventional AC-DC power supplies and DC-DC converters provide an output that is regulated to provide a “constant-voltage.” However, LED...
-
Most AC-DC power supplies and DC-DC converters have internal current-limiting circuits to protect the power device, and to some degree its l...
-
Most medium to high power AC-DC power supplies and some DC-DC converters include "Remote Sense" connection points (+ and - Sense) ...
-
The Power Guy blog focuses on modern switch-mode power supplies and converters. However, to provide the newbie (newcomer) with some backgro...
1 comment:
Great information here - I will be bookmarking your blog!
Post a Comment